skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Amnon Catav, Boyang Fu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent years, methods were proposed for assigning feature importance scores to measure the contribution of individual features. While in some cases the goal is to understand a specific model, in many cases the goal is to understand the contribution of certain properties (features) to a real-world phenomenon. Thus, a distinction has been made between feature importance scores that explain a model and scores that explain the data. When explaining the data, machine learning models are used as proxies in settings where conducting many real-world experiments is expensive or prohibited. While existing feature importance scores show great success in explaining models, we demonstrate their limitations when explaining the data, especially in the presence of correlations between features. Therefore, we develop a set of axioms to capture properties expected from a feature importance score when explaining data and prove that there exists only one score that satisfies all of them, the Marginal Contribution Feature Importance (MCI). We analyze the theoretical properties of this score function and demonstrate its merits empirically. 
    more » « less